New perspectives on superparameterization for geophysical turbulence

نویسندگان

  • Andrew J. Majda
  • Ian G. Grooms
چکیده

This is a research expository paper regarding superparameterization, a class of multi-scale numerical methods designed to cope with the intermittent multi-scale effects of inhomogeneous geophysical turbulence where energy often inverse-cascades from the unresolved scales to the large scales through the effects of waves, jets, vortices, and latent heat release from moist processes. Original as well as sparse space time superparameterization algorithms are discussed for the important case of moist atmospheric convection including the role of multi-scale asymptotic methods in providing self-consistent constraints on superparameterization algorithms and related deterministic and stochastic multi-cloud parameterizations. Test models for the statistical numerical analysis of superparameterization algorithms are discussed both to elucidate the performance of the basic algorithms and to test their potential role in efficient multi-scale data assimilation. The very recent development of grid-free seamless stochastic superparameterization methods for geophysical turbulence appropriate for “eddy-permitting” mesoscale ocean turbulence is presented here including a general formulation and illustrative applications to two-layer quasigeostrophic turbulence, and the difficult test case involving the MMT models of dispersive wave turbulence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient stochastic superparameterization for geophysical turbulence.

Efficient computation of geophysical turbulence, such as occurs in the atmosphere and ocean, is a formidable challenge for the following reasons: the complex combination of waves, jets, and vortices; significant energetic backscatter from unresolved small scales to resolved large scales; a lack of dynamical scale separation between large and small scales; and small-scale instabilities, conditio...

متن کامل

Stochastic superparameterization in quasigeostrophic turbulence

In this article we expand and develop the authors’ recent proposed methodology for efficient stochastic superparameterization algorithms for geophysical turbulence. Geophysical turbulence is characterized by significant intermittent cascades of energy from the unresolved to the resolved scales resulting in complex patterns of waves, jets, and vortices. Conventional superparameterization simulat...

متن کامل

Stochastic Superparameterization and Multiscale Filtering of Turbulent Tracers

Data assimilation or filtering combines a numerical forecast model and observations to provide accurate statistical estimation of the state of interest. In this paper we are concerned with accurate data assimilation of a sparsely observed passive tracer advected in turbulent flows using a reduced-order forecast model. The turbulent flows which contain anisotropic and inhomogeneous structures su...

متن کامل

Multiscale Models with Moisture and Systematic Strategies for Superparameterization

The accurate parameterization of moist convection presents a major challenge for the accurate prediction of weather and climate through numerical models. Superparameterization is a promising recent alternative strategy for including the effects of moist convection through explicit turbulent fluxes calculated from a cloud-resolving model. Basic scales for cloud-resolving modeling are the microsc...

متن کامل

Preventing catastrophic filter divergence using adaptive additive inflation

Ensemble based filtering or data assimilation methods have proved to be indispensable tools in atmosphere and ocean science as they allow computationally cheap, low dimensional ensemble state approximation for extremely high dimensional turbulent dynamical systems. For sparse, accurate and infrequent observations, which are typical in data assimilation of geophysical systems, ensemble filtering...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 271  شماره 

صفحات  -

تاریخ انتشار 2014